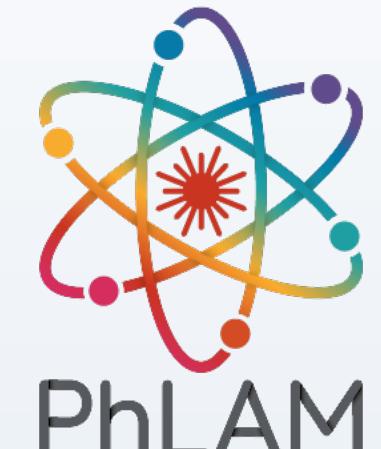


Entanglement in Electron Quantum Optics

M. Paulet¹, G. Rebora¹, A. Feller² and P. Degiovanni¹

¹ École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique (UMR 5672), F-69342 Lyon, France

² Université de Lille, CNRS, Laboratoire de Physique des Lasers, Atomes et Molécules (UMR 8523), F-59000 Lille, France



Motivations

- Using quantum optics tools to describe entanglement in electron quantum optics circuits [1].
- Correlations associated to Fermi statistics and Coulomb interactions.
- Collisional experiments to extract information about two-particle excitations.

Quantum information with fermions

Entanglement for indistinguishable excitations [2]:

- Based on mode separation: $\mathcal{H}^{(1p)} = \mathcal{H}_A \oplus \mathcal{H}_B$
- Separable states in Fock space \mathcal{F} :

$$|\psi\rangle_{\text{sep}} = P_A(a_1^\dagger, \dots, a_p^\dagger)P_B(b_1^\dagger, \dots, b_q^\dagger)|0\rangle$$

- Entangled states are the non-separable ones.

Physical state space and mode composition:

- Bosons:** $\mathcal{H}_{\text{phys}} = \mathcal{F}_B$. Alice and Bob modes composed by \otimes , the tensor product, i.e. $\mathcal{F}_B = \mathcal{F}_B^{(\text{Alice})} \otimes \mathcal{F}_B^{(\text{Bob})}$.
- Fermions:** obey Fermi statistics so Alice and Bob modes composed with \wedge , **the exterior product**, i.e. $\mathcal{F}_F = \mathcal{F}_F^{(\text{Alice})} \wedge \mathcal{F}_F^{(\text{Bob})}$.
And they obey the **parity superselection rule**: $\mathcal{H}_{\text{phys}} \neq \mathcal{F}_F$ but [3]:

$$\mathcal{H}_{\text{phys}} = \mathcal{F}_F^{\text{even}} \cup \mathcal{F}_F^{\text{odd}}$$

Resources inequalities:

$$\begin{aligned} [f] &\geq [c] \quad \text{but} \quad \neg([f] \geq [q]) \\ 2[f] &\geq [q] \quad \text{and} \quad [q] \geq 2[f] \end{aligned}$$

Quantum teleportation of a fermionic mode:

$$\begin{aligned} [ff] + 2[c \rightarrow c] + [f]_B &\geq [f_E f_A \rightarrow f_E f_B] \\ [qq] + 2[c \rightarrow c] &\geq [q \rightarrow q] \quad (\text{Qubit}) \end{aligned}$$

Entanglement witness

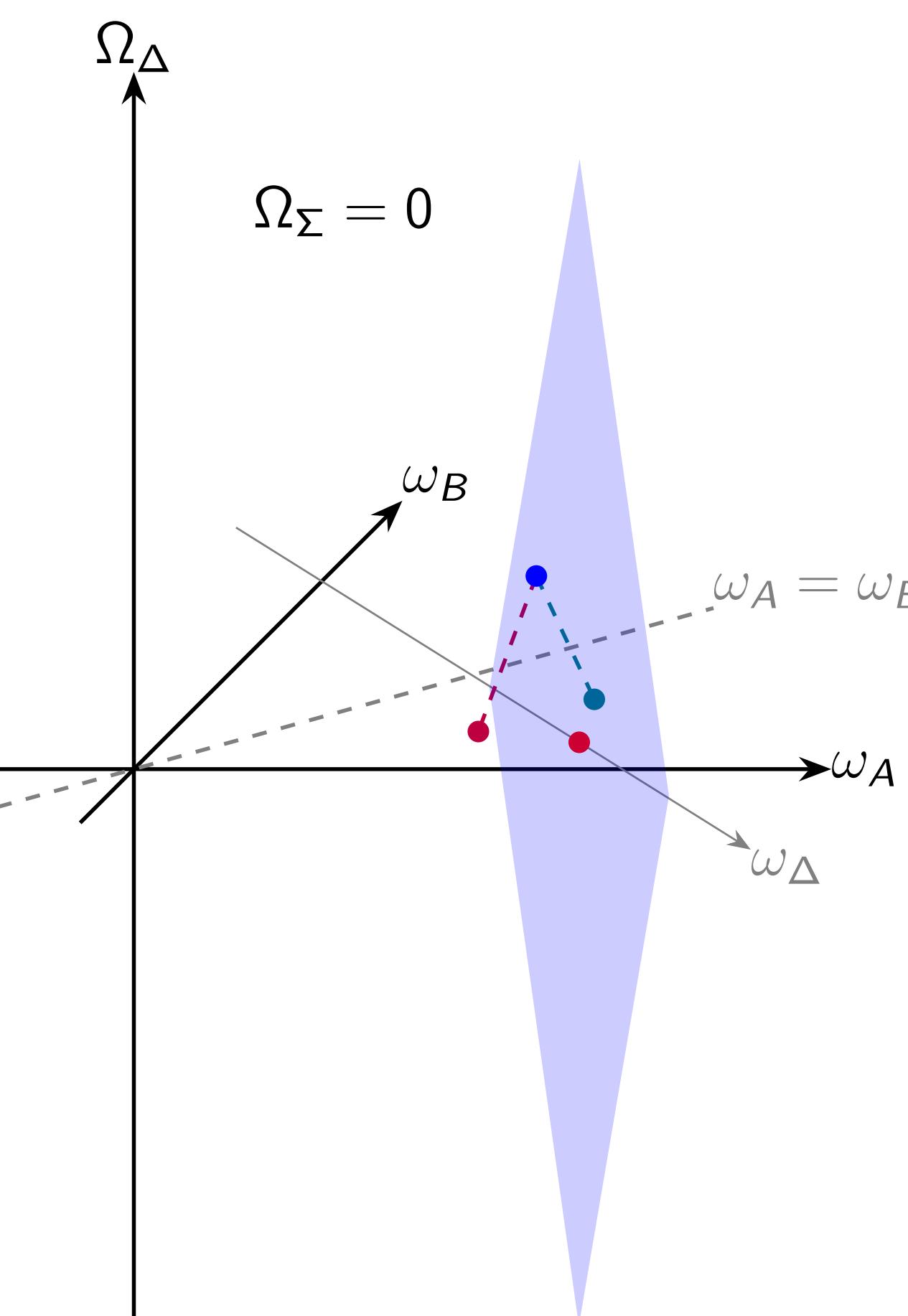
Cauchy-Schwarz entanglement witness on two-electron coherence [4]:

$$\left| \tilde{\mathcal{G}}_{AB}^{(2e)}(\omega_1, \omega_2 | \omega'_1, \omega'_2) \right|^2 \leq \tilde{\mathcal{G}}_{AB}^{(2e)}(\omega_1, \omega_2 | \omega_1, \omega_2) \tilde{\mathcal{G}}_{AB}^{(2e)}(\omega'_1, \omega'_2 | \omega'_1, \omega'_2)$$

- Compares one **off-diagonal** coherence with two **diagonal** coherences.
- Witness:** (violated \Rightarrow entangled) **but** (respected \Rightarrow separated).
- Clicks for **non-Positive Partial Transposed** (non-PPT) states:
 ρ is separable \Rightarrow all the eigenvalues of ${}^{t_A}\rho$ and ${}^{t_B}\rho$ are **positive**.
- Sensitive to **energy-bin entanglement** (see Ref. [5] in microwave quantum optics).

Collision induced entanglement

Coherent collision of two perfectly energy-localized electrons:



- 4D-space** split into two 2D-spaces:
 - (ω_A, ω_B) : **diagonal** coherence \Leftrightarrow **classical** variables
 - $(\Omega_\Sigma, \Omega_\Delta)$: **off-diagonal** coherence \Leftrightarrow **quantum** variables.
- Diamond**: area of non-zero coherence (**quantum scattering contributions**).
- To respect the witness, both C.S. points must be **in the diamond**

Quantum coherent energy transfer during collision \Rightarrow witness clicks

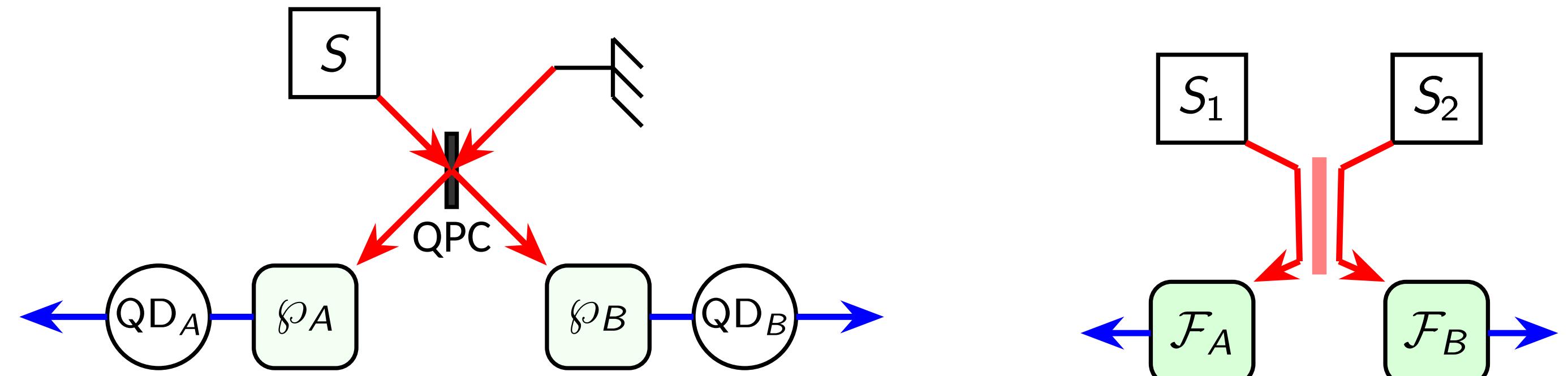
Next steps: departure from ideality

- discuss **energy-spread** electrons (Landau [6] or Leviton [7] excitations)
- Effect of **dissipative** collisions (**environmental effects**)

Two-electron coherence measurement

A **generalized Franson interferometer** [8] gives access to the two-electron coherence $\Delta\mathcal{G}^{(2e)}$ through current-current correlations:

$$\langle i_A i_B \rangle = RT (\mathcal{F}_A \otimes \mathcal{F}_B) \Delta\mathcal{G}_S^{(2e)}, \quad \mathcal{F}_j = \text{QD}_j \circ \wp_j$$



- Photoassisted filters $\wp_{A,B}$ mix energies \rightarrow access to **off-diagonal** components of $\Delta\mathcal{G}^{(2e)}$.
- Quantum dots $\text{QD}_{A,B}$ select energy \rightarrow access to **diagonal** components.
- A combined filter/detector $\mathcal{F} = \text{QD}(\omega_e) \circ \wp[(p_n)_n]$ defines

$$\Pi[\mathcal{F}] = \sum_{n_+, n_-} p_{n_+} p_{n_-}^* |\omega_e - 2\pi n_+ f\rangle \langle \omega_e - 2\pi n_- f|,$$

so that $P_{\text{click}} = \text{Tr}[\rho^{(1)} \Pi[\mathcal{F}]]$ contains both diagonal (via ω_e) and off-diagonal (via the $p_{n \neq 0}$) frequency components.

- Photoassisted filtering enables full **two-electron tomography**.

References

- [1] E. Bocquillon *et al.*, Ann. Phys. (Berlin) **526**, 1 (2014).
- [2] F. Benatti *et al.*, Physics Reports **878**, 1–27 (2020).
- [3] N.T. Vidal *et al.*, Phys. Rev. A **103**, 032411 (2021).
- [4] S. Wölk *et al.*, Phys. Rev. A **90**, 022315 (2014).
- [5] A. Peugeot *et al.*, Phys. Rev. X **11**, 031008 (2021).
- [6] G. Feve *et al.*, Science **316**, 1169 (2007).
- [7] J. Dubois *et al.*, Nature (London) **502**, 659 (2013).
- [8] E. Thibierge *et al.*, Phys. Rev. B **93**, 081302 (2016).