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Motivations
■ Using quantum optics tools to describe entanglement in electron quan-tum optics circuits [1].
■ Correlations associated to Fermi statistics and Coulomb interactions.
■ Collisional experiments to extract information about two-particle exci-tations.

Quantum information with fermions
Entanglement for indistinguishable excitations [2]:

■ Based on mode separation: H(1p) = HA
⊥
⊕ HB

■ Separable states in Fock space F :
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1, ... , a†
p)PB(b†

1 , ... , b†
q) |0⟩

■ Entangled states are the non-separable ones.
Physical state space and mode composition:

■ Bosons: Hphys = FB . Alice and Bob modes composed by ⊗, the tensor
product, i.e. FB = F (Alice)

B ⊗ F (Bob)
B .

■ Fermions: obey Fermi statistics so Alice and Bobmodes composed with
∧, the exterior product, i.e. FF = F (Alice)

F ∧ F (Bob)
F .And they obey the parity superselection rule: Hphys ̸= FF but [3]:

Hphys = Feven
F ∪ Fodd

F
Resources inequalities:

[f ] ≥ [c] but ¬([f ] ≥ [q])
2[f ] ≥ [q] and [q] ≥ 2[f ]

Quantum teleportation of a fermionic mode:
[ff ] + 2[c → c] + [f ]B ≥ [fE fA → fE fB]

[qq] + 2[c → c] ≥ [q → q] (Qubit)

Entanglement witness
Cauchy-Schwarz entanglement witness on two-electron coherence [4]:∣∣∣G̃(2e)
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■ Compares one off-diagonal coherence with two diagonal coherences.
■ Witness: (violated =⇒ entangled) but (respected ≠⇒ separated).
■ Clicks for non-Positive Partial Transposed (non-PPT) states:
ρ is separable =⇒ all the eigenvalues of tAρ and tBρ are positive.

■ Sensitive to energy-bin entanglement (see Ref. [5] in microwave quan-tum optics).

Collision induced entanglement
Coherent collision of two perfectly energy-localized electrons:
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■ 4D-space split into two 2D-spaces:
• (ωA,ωB): diagonal coherence

⇐⇒ classical variables
• (ΩΣ,Ω∆): off-diagonal coher-ence ⇐⇒ quantum variables.

■ Diamond: area of non-zero coher-ence (quantum scattering contri-butions).
■ To respect the witness, both C.S.points must be in the diamond

Quantum coherent energy
transfer during collision =⇒

witness clicks

Next steps: departure from ideality
■ discuss energy-spread electrons (Landau [6] or Leviton [7] excitations)
■ Effect of dissipative collisions (environmental effects)

Two-electron coherence measurement
A generalized Franson interferometer [8] gives access to the two-electron co-herence∆G(2e) through current–current correlations:

⟨iAiB⟩ = RT (FA ⊗ FB)∆G(2e)
S , Fj = QDj ◦ ℘j
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■ Photoassisted filters ℘A,B mix energies → access to off-diagonal com-ponents of∆G(2e).
■ Quantum dots QDA,B select energy → access to diagonal components.
■ A combined filter/detector F = QD(ωe) ◦ ℘ [(pn)n] defines

Π[F ] =
∑

n+,n−

pn+p∗
n−

|ωe − 2πn+f ⟩⟨ωe − 2πn−f |,

so that Pclick = Tr
[
ρ(1)Π[F ]

] contains both diagonal (via ωe) and off-diagonal (via the pn ̸=0) frequency components.
■ Photoassisted filtering enables full two-electron tomography.
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