

CENTRALE LYON

Entanglement generation and measurement in electron quantum optics

M2 internship (13/01/2025 - 04/07/2025)

Mathieu Paulet - École Centrale de Lyon, Lyon - July 8th, 2025

Summary

Introduction and context

- I. Electron quantum optics
- II. Quantum tomography protocols
- III. Two-electron coherent scattering
- Conclusion and perspectives

Marguerite et al., Physica status solidi (b) 254, 3 (Dec. 2016).

Introduction and context

Introduction and context

- Electron quantum optics: single electrons in coherent quantum conductors
- Quantum computing: encoding quantum information into electronic states
 - Performing operations on propagating electrons: electronic flying qubits
 - Coulomb interaction: facilitates operations with several e-qubits
- (1) Efficiently determinate electronic quantum states: quantum tomography
- (2) Understand the collision-induced entanglement: entanglement witness and two-electron scattering

I. Electron quantum optics

Differences between EQO and PQO

General definitions and comparisons

Definitions

- Boson: particle with an integer spin
- Fermion: particle with a half-integer spin
- Fermi sea: energy levels filled by the electrons of a system at equilibrium
- Fermi energy: energy of the Fermi sea's highest filled level
- Reference state: equilibrium state of a system, on top of which any excitation is created

	PQO	EQO
Particle	Photon (spin 1)	Electron (spin 1/2)
Statistics	Bose-Einstein (symmetric)	Fermi-Dirac (anti-symmetric)
Reference state	Vacuum (0 photon)	Fermi sea (many electrons)
Interaction	None	Coulomb repulsion

First-order electronic coherence

Definition and properties

- First-order coherence function: $\mathcal{G}^{(e)}_{\hat{\rho}}(t;t') := \langle \hat{\psi}^{\dagger}[t'] \hat{\psi}[t] \rangle_{\hat{\rho}} = Tr(\hat{\rho} \, \hat{\psi}^{\dagger}[t'] \, \hat{\psi}[t])$
 - One-electron physics in a quantum conductor: overlap between detection events at t and t'
 - Excess of coherence compared to the coherence of the Fermi sea: $\mathcal{G}^{(e)}_{\hat{\rho}} := \mathcal{G}^{(e)}_{F} + \Delta \mathcal{G}^{(e)}_{\hat{\rho}}$
- Experimentally linked to the average current: $\langle i(t) \rangle_{\hat{\rho}} = -ev_F \Delta \mathcal{G}^{(e)}_{\hat{\rho}}(t;t)$
- Wigner representation: $\mathcal{W}_{\hat{\rho}}^{(e)}(t;\omega) := v_F \int_{\mathbb{R}} dt' \, \mathcal{G}_{\hat{\rho}}^{(e)}(t;t') \, e^{i\omega t'}$

Second-order electronic coherence

Definition and properties

- Second-order coherence function: $\mathcal{G}_{\hat{\rho}}^{(2e)}(t_1,t_2;t_1',t_2') := \langle \hat{\psi}^{\dagger}[t_1'] \, \hat{\psi}^{\dagger}[t_2'] \, \hat{\psi}[t_2] \, \hat{\psi}[t_1] \rangle_{\hat{\rho}}$
 - Two-electron physics: overlap between detection events at (t_1, t_2) and (t_1', t_2')
 - $\textbf{- Excess of coherence: } \mathcal{G}_{\hat{\rho}}^{(2e)} := \mathcal{G}_{F}^{(2e)} + \left(\Delta \mathcal{G}_{\hat{\rho}}^{(e)} \mathcal{G}_{F}^{(e)} + \mathcal{G}_{F}^{(e)} \Delta \mathcal{G}_{\hat{\rho}}^{(e)}\right) (\leftrightarrow) + \Delta \mathcal{G}_{\hat{\rho}}^{(2e)}$
- Associated Wigner representation:

$$\mathcal{W}_{\hat{\rho}}^{(2e)}(t_1, \omega_1; t_2, \omega_2) := v_F^2 \iint_{\mathbb{R}^2} dt_1' \, dt_2' \, \mathcal{G}_{\hat{\rho}}^{(2e)}(t_1, t_2; t_1', t_2') \, e^{i(\omega_1 t_1' + \omega_2 t_2')}$$

Railroad qubit

Fermionic qubit architecture

- Two parallel chiral propagation channels: quantum Hall edge channels
- Qubit architecture imposed by the parity super-selection rule (PSSR)
 - No superposition of fermionic states with number of particles of different parities
 - Delocalization of one excitation on both channels: respects the PSSR
- More stable than « usual » qubits as 0 and 1 states have the same energy

II. Quantum tomography protocols

Hong-Ou-Mandel interferometry

Principle of the experimental setup

- HOM experiment: two-particle interferometry
 - Sending two photons on a beam-splitter
 - Dip in the number correlations after the beam splitter when two photons income simultaneously
- Bosons exit the beam-splitter in the same channel
- Fermions tend to exit in two different channels
 - Consequence of Pauli's exclusion principle

Hong-Ou-Mandel interferometry

Quantum tomography protocol

- Electronic HOM interferometer
 - Unknown and probe electrons incoming in channels 1 and 2
 - Unknown excitation probed by a set of sinusoidal probe signals $V_{P_n}(t) = V_{DC} + V_{P_n} \cos(2i\pi n f t)$
- Noise in current measured after interaction
- Overlap between the two incoming firstorder coherences

Marguerite et al., Physica status solidi (b) 254, 3 (Dec. 2016).

Hong-Ou-Mandel tomography

Example and limitations

- Lorentzian « unknown » excitation
 - Excellent agreement with theory for the five first harmonics of $\Delta \mathcal{W}$
 - Precise determination of the electron's wave-function
- One important limitation
 - May require a large number of harmonics
 - Important amount of time for a single wave-function (~ 2 days of non-stop measurements)

Bisognin et al., Nature communications 10, 1 (Jul. 2019).

Voltage pulse-train tomography

Principle and illustration

- Determinate the coherence with linear combinations of sinusoidal signals $(q_P = e \ll 1)$
 - Probe signals: voltage pulse-trains of wavelets ${\mathcal F}$
 - More suitable to precisely probe the coherence space
- Example: **excellent reproduction** of a Gaussian wavelet with only N=5 harmonics

$$\mathcal{F}_P(t) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{t}{\tau_0}\right)^2\right)$$

First-order coherence function

Frequency space representation

- First-order coherence $\widetilde{\mathcal{F}}_{\hat{\rho}}^{(e)}(\omega_{\!A};\omega_{\!B})$
 - Change of variables: $(\overline{\omega}, \Omega) = \left(\frac{\omega_A + \omega_B}{2}, \omega_A \omega_B\right)$
 - Average energy $\overline{\omega}$: diagonal component
 - Energy difference Ω : off-diagonal component

$$\widetilde{\mathscr{G}}_{\hat{\rho}}^{(e)}(\omega_A, \omega_B) \leftarrow \widetilde{\mathscr{G}}_{\hat{\rho}}^{(e)}\left(\overline{\omega} + \frac{\Omega}{2}, \overline{\omega} - \frac{\Omega}{2}\right)$$

Voltage pulse-train tomography

Efficient probing of the coherence space

- 1st-order $\mathcal{G}^{(e)}$ approximation in q_P
 - Access to the electron-hole coherences
 - Probe energy bands centered on zero
 - Higher harmonic
 ⇒ wider energy band
 - Vertical translation by adding a bias voltage ${\cal V}_{DC}$
- Adjust the probed areas: more efficient because less measurement points

Voltage pulse-trains' coherence

Electron and hole excitation content

- 2nd-order $\mathcal{G}^{(e)}$ approximation in q_P
 - Probe complementary areas in the coherence space
 - Access to electron-electron and hole-hole coherences
- Determine the content in electron and hole excitations
 - e-e and h-h processes: only accessible at the 2nd-order in q_p
 - Linked to the occupation numbers: content of the unknown signal in terms of particle excitations

III. Two-electron coherent scattering

Second-order coherence function

Frequency space representation

- Separation of the 4D frequency space into two 2D spaces
 - Two « diagonal » dimensions ($\overline{\omega}_A$ and $\overline{\omega}_B$): classical plane
 - Two « off-diagonal » dimensions (Ω_A and Ω_B): quantum plane

Diagonal and **off-diagonal** variables:
$$\begin{cases} \overline{\omega}_A := \frac{\omega_A + \omega_A'}{2} \\ \Omega_A := \omega_A - \omega_A' \end{cases} \text{ and } \begin{cases} \overline{\omega}_B := \frac{\omega_B + \omega_B'}{2} \\ \Omega_B := \omega_B - \omega_B' \end{cases}$$

$$\widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)}(\omega_{A}, \omega_{B}; \omega_{A}', \omega_{B}') = \widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)} \left(\overline{\omega}_{A} + \frac{\Omega_{A}}{2}, \overline{\omega}_{B} + \frac{\Omega_{B}}{2}; \overline{\omega}_{A} - \frac{\Omega_{A}}{2}, \overline{\omega}_{B} - \frac{\Omega_{B}}{2} \right)$$

From 4D to (2+2)D in the frequency space

Simple examples

- Plane waves at energies ω_A and ω_B
 - $|\psi\rangle = \hat{c}_A^{\dagger}[\omega_A] \, \hat{c}_B^{\dagger}[\omega_B] \, |F\rangle$ with $|F\rangle := |F\rangle_A \wedge |F\rangle_B$
- Superposition of two Slater determinants

•
$$|\psi\rangle = \frac{1}{\sqrt{2}} (\hat{c}_A^{\dagger}[\omega_A] \, \hat{c}_B^{\dagger}[\omega_B] + \hat{c}_A^{\dagger}[\omega_A'] \, \hat{c}_B^{\dagger}[\omega_B']) |F\rangle$$

States superposition

 off-diagonal terms

Diagonal

Cauchy-Schwarz entanglement witness

Expression in the frequency domain

• Cauchy-Schwarz « full- $\mathcal{G}^{(2e)}$ » entanglement witness

$$\langle \hat{A}_1 \hat{A}_2 \hat{B}_1 \hat{B}_2 \rangle_{\hat{\rho}}^2 \leq \langle \hat{A}_1 \hat{A}_1^{\dagger} \hat{B}_2^{\dagger} \hat{B}_2 \rangle_{\hat{\rho}} \langle \hat{A}_2^{\dagger} \hat{A}_2 \hat{B}_1 \hat{B}_1^{\dagger} \rangle_{\hat{\rho}}$$

- Sufficient (but not necessary) condition to detect entangled states
 - Separable state: $|\psi\rangle=\hat{O}_A\,\hat{O}_B\,|F\rangle$ (with $\hat{O}_{A/B}$ creation operators acting on states of $\mathcal{H}_{A/B}$)

$$|\widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)}(\omega_A, \omega_B; \omega_A', \omega_B')|^2 \leq \widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)}(\omega_A, \omega_B'; \omega_A, \omega_B') \widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)}(\omega_A', \omega_B; \omega_A', \omega_B)$$

Two-electron coherent scattering model

Scattering model for « high energy » electrons

- Two electrons propagate along two channels A and B with energies (ω_A, ω_B)
- Scattering process described by a scattering matrix \hat{S}
 - Limited bandwidth for the **exchanged** energy: $\delta\omega \in [-\omega_A, \omega_B]$
 - Unitary matrix \hat{S} , function of ω_A , ω_B , and $\delta\omega$
- Coherent scattering with conservation of the total energy: $E_{tot} = \omega_A + \omega_B$

Collision of energy-localized wave-packets

The outgoing two-electron state

• Incoming electrons: perfectly localized in energy (at ω_A and ω_B)

$$|\psi\rangle_{in} := \hat{c}_A^{\dagger}[\omega_A] \, \hat{c}_B^{\dagger}[\omega_B] \, |F\rangle \quad \text{with} \quad |F\rangle := |F\rangle_A \wedge |F\rangle_B$$

Scattered electrons: superposition of all the possible energy transfers

$$|\psi\rangle_{out} := \int_{\mathbb{R}} d(\delta\omega) \, S(\delta\omega; \omega_A, \omega_B) \, \hat{c}_A^{\dagger}[\omega_A + \delta\omega] \, \hat{c}_B^{\dagger}[\omega_B - \delta\omega] \, |F\rangle$$

• Goal of the study: apply the full- $\mathscr{G}^{(2e)}$ criterion with $\hat{
ho}_{out}:=|\psi\rangle_{out}\langle\psi|_{out}$

Visualization of the scattering process

Effect on the two-electron coherence

Considering two quantum paths

• Conserved quantities: $\omega_{\!A} + \omega_{\!B}$ and $\Omega_{\!A} + \Omega_{\!B}$

Representation of the scattered states

Two-dimensional visualization

- View in the plane $(\delta\omega,\delta\Omega):=(\omega_A-\omega_B,\Omega_A-\Omega_B)$
- Detection of both electrons above the Fermi sea
 - $|\delta\omega^{\pm}| \leq \delta\omega_{max}$: rectangle in the $(\delta\omega^{+}, \delta\omega^{-})$ plane
 - Rotation and rescaling with $(\overline{\omega}, \Delta\omega)$

Scattered states represent a diamond in the $(\delta\omega,\delta\Omega)$ plane

Cauchy-Schwarz entanglement witness

Four-dimensional visualization

$$|\widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)}(\omega_A,\omega_B;\omega_A',\omega_B')|^2 \leq \widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)}(\omega_A,\omega_B';\omega_A,\omega_B')\widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)}(\omega_A',\omega_B;\omega_A',\omega_B)$$

- Coordinates of the right-hand side points
 - Diagonal component: out of the energy conservation line
 - No off-diagonal component: C.S. points are always diagonal
- Witness violated as soon as $\Delta \omega \neq 0 \ (\iff \delta \omega^+ \neq \delta \omega^-)$

The scattering process always creates entanglement

Diagonal

diagonal

Collision-induced entanglement

Take-home messages

- Scattered states: « flat » diamond in the $(\delta\omega,\delta\Omega)$ plane
- Expression in terms of \hat{S} matrix coefficients:

$$|S(\delta\omega^+;\omega_A,\omega_B)S(\delta\omega^-;\omega_A,\omega_B)^*|^2 \leq 0$$

- Scattering

 C.S. points out of the diamond
- Diamond's flatness due to the perfect localization in energy of the incoming electrons

Conclusion and perspectives

Conclusion and perspectives

- Improvement of the HOM tomography protocol: important gain of time
 - Tune the harmonics and the bias voltage to probe the coherence more efficiently
 - Excitation content of low voltage pulses (work in progress)
- Creation of entanglement in a two-particle coherent scattering model
 - Study more realistic wave-packets: Landau wave-packets, Levitons
 - Specifying the **scattering model**: explicit expression of the \hat{S} matrix
 - Incoherent scattering: exchange of energy with the environment
- Perspective: one and two electron tomography by photo-assisted filtering

Thank you for your attention!

A. Parity super-selection rule

- Any superposition of fermionic states with different number-of-particle parities is forbidden
- Comes from Einstein's causality principle: without SSR, no-signaling is violated
 - Consequence: no fermionic qubit with 1 mode, as $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ is forbidden
 - Limitation of the superposition principle (fundamental principle of QM) for fermions
- Basis for the development of a fermionic quantum theory of information

B. Quantum point contact

- Fermionic beam splitter: delocalizes an electron into two channels
- Two electrodes in a 2D electron gas
 - Application of a **potential** V_{qpc} to both electrodes
 - Coulomb repulsion creates an energetic barrier
 - A fraction of the electron tunnels through the QPC
- The higher V_{qpc} , the lower fraction exits the QPC

Bocquillon et al., Phys. Rev. Lett. 108 (2012), 196803.

C. Mesoscopic capacitor

Appendices

- On-demand source of single electronic excitations
- QPC separating a 2DEG into two areas
 - Reservoir with constant potential
 - Area submitted to a varying potential $V_{\it exc}$
- Periodic emission of an electron and a hole excitations

Fève, Thèse de doctorat, Université Pierre et Marie Curie - Paris VI, Nov. 2006.

Filippone et al., Entropy 22, 8 (July 2020), 847.

D. Cauchy-Schwarz inequalities

Appendices

General Cauchy-Schwarz inequality (second-order coherence):

$$|\widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)}(\omega_A, \omega_B; \omega_A', \omega_B')|^2 \leq \widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)}(\omega_A, \omega_B; \omega_A, \omega_B) \widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)}(\omega_A', \omega_B'; \omega_A', \omega_B')$$

• Cauchy-Schwarz witnesses (Hillery-Zubairy):

$$\begin{split} |\widetilde{\mathcal{G}}_{\hat{\rho}}^{(2e)}(\omega_{A},\omega_{B};\omega_{A}',\omega_{B}')|^{2} &\leq \widetilde{\mathcal{F}}_{\hat{\rho}}^{(2e)}(\omega_{A},\omega_{B}';\omega_{A},\omega_{B}') \,\, \widetilde{\mathcal{F}}_{\hat{\rho}}^{(2e)}(\omega_{A}',\omega_{B};\omega_{A}',\omega_{B}) \quad \text{(full $\mathcal{G}^{(2e)}$-criterion)} \\ |\mathcal{G}^{(e)}(\omega_{A},\omega_{B})|^{2} &\leq \mathcal{G}^{(2e)}(\omega_{A},\omega_{B};\omega_{A},\omega_{B}) \quad \text{(hybrid criterion)} \\ |\mathcal{G}^{(e)}(\omega_{A},\omega_{B})|^{2} &\leq \left(1-\mathcal{G}^{(e)}(\omega_{A};\omega_{A})\right) \mathcal{G}^{(e)}(\omega_{B};\omega_{B}) \quad \text{(full $\mathcal{G}^{(e)}$-crtierion)} \end{split}$$

E. Spin-operator representation

$$\begin{cases} \hat{\sigma}^x = \hat{\psi}_A^{\dagger}[\varphi] \, \hat{\psi}_B[\varphi'] + \hat{\psi}_B^{\dagger}[\varphi'] \, \hat{\psi}_A[\varphi] \\ \hat{\sigma}^y = i \big(\hat{\psi}_B^{\dagger}[\varphi'] \, \hat{\psi}_A[\varphi] - \hat{\psi}_A^{\dagger}[\varphi] \, \hat{\psi}_B[\varphi'] \big) \text{ and } \begin{cases} \hat{\sigma}^+ = \frac{1}{2} (\hat{\sigma}^x + i \hat{\sigma}^y) = \hat{\psi}_A^{\dagger}[\varphi] \, \hat{\psi}_B[\varphi'] \\ \hat{\sigma}^- = \frac{1}{2} (\hat{\sigma}^x - i \hat{\sigma}^y) = \hat{\psi}_B^{\dagger}[\varphi'] \, \hat{\psi}_A[\varphi] \\ \hat{\sigma}^- = \hat{\psi}_A^{\dagger}[\varphi] \, \hat{\psi}_A[\varphi] - \hat{\psi}_B^{\dagger}[\varphi'] \, \hat{\psi}_B[\varphi'] \end{cases}$$

$$\begin{cases} \hat{\sigma}^{+} = \frac{1}{2}(\hat{\sigma}^{x} + i\hat{\sigma}^{y}) = \hat{\psi}_{A}^{\dagger}[\varphi] \,\hat{\psi}_{B}[\varphi'] \\ \hat{\sigma}^{-} = \frac{1}{2}(\hat{\sigma}^{x} - i\hat{\sigma}^{y}) = \hat{\psi}_{B}^{\dagger}[\varphi'] \,\hat{\psi}_{A}[\varphi] \\ \hat{1}^{\sigma} = \hat{\psi}_{A}^{\dagger}[\varphi] \,\hat{\psi}_{A}[\varphi] + \hat{\psi}_{B}^{\dagger}[\varphi'] \,\hat{\psi}_{B}[\varphi'] \end{cases}$$

- Satisfy the Fermi algebra $\{\hat{\sigma}^{\alpha}, \hat{\sigma}^{\beta}\} = 2i\varepsilon_{\alpha\beta\gamma}\hat{\sigma}^{\gamma}$
- **Hybrid** criterion: $\langle \hat{\sigma}^+ \rangle_{\hat{\rho}} = 0$

$$\langle \hat{\sigma}^+ \rangle_{\hat{\rho}} = 0$$

Full
$$\mathscr{G}^{(e)}$$
-criterion: $2|\langle \hat{\sigma}^+ \rangle_{\hat{\rho}}| \leq 1 - \langle \hat{\sigma}^z \rangle_{\hat{\rho}}$

E. Spin-operator representation

Appendices

• Hybrid witness: $\langle \hat{\sigma}^+ \rangle_{\hat{\rho}} = 0$

• Full- $\mathcal{G}^{(e)}$ witness: $2|\langle \hat{\sigma}^+ \rangle_{\hat{\rho}}| \leq 1 - \langle \hat{\sigma}^z \rangle_{\hat{\rho}}$

F. Collision of two Landau wave-packets

- Spreading of the wave-packet
- The diamond is "spread" in the $\omega_A = \omega_B$ direction
- Witness respected:
 overlap between the
 scattered state and
 the C.S. points

