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Ce sujet est composé de deux problèmes indépendants. Le premier porte sur les oscillations de
l’atome d’azote dans la molécule d’ammoniac (NH3). Le second aborde une méthode de spectroscopie
de Fourier, et son application au cas d’une lampe à vapeur de sodium (Na). Des données et un
formulaire sont disponibles à la fin de cet énoncé.

1 Inversion de la molécule d’ammoniac

On s’intéresse dans ce problème aux oscillations effectuées par l’atome d’azote d’une molécule
d’ammoniac entre deux conformations stables. À l’échelle quantique, les énergies sont usuellement
exprimées en électron-Volt (eV), 1eV correspondant à l’énergie acquise par un électron accéléré sous
un potentiel de 1V. On rappelle la conversion d’une énergie exprimée en eV en une énergie exprimée
en J : E[J ] = eE[eV ], où e est la charge élémentaire.

1.1 Traitement quantique et fonction d’onde

La molécule d’ammoniac NH3 se présente sous la forme d’une pyramide symétrique, l’atome d’azote
étant à son sommet. Les trois atomes d’hydrogène définissent un plan de référence, et la position
de l’atome d’azote est alors repérée par l’abscisse x telle que |x| est la distance de l’atome d’azote
au plan de référence (voir figure 1a). La molécule d’ammoniac peut se trouver dans deux états de
conformation, selon que l’atome se trouve du côté x > 0 ou du côté x < 0. Les deux états sont
séparés par une barrière de potentiel V0 = 0.25 eV (voir figure 1b). On appelle inversion le passage
d’une conformation à l’autre, lorsque l’atome d’azote traverse la barrière de potentiel.
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Figure 1: Géométrie et énergie potentielle de la molécule d’ammoniac

1. Interpréter la forme, la symétrie et les points particuliers de la courbe d’énergie potentielle
présentée en figure 1b.

2. L’énergie thermique kB T est-elle suffisante pour que la molécule d’ammoniac puisse s’inverser
à température ambiante ? À partir de quelle température cette inversion peut-elle s’effectuer ?
Commenter.

Une des spécificités de la théorie quantique est que tout objet qu’elle décrit présente simul-
tanément des comportements corpusculaire et ondulatoire. De cette manière, à toute particule
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d’énergie E et de quantité de mouvement p, on peut associer une onde :

� de fréquence ν et de pulsation ω = 2πν, telles que E = hν = ℏω;

� de longueur d’onde λ et de vecteur d’onde de norme k = 2π
λ , tels que p = h

λ = ℏk.

3. Proposer un critère permettant de déterminer si l’étude d’une particule nécessite un traitement
quantique ou non. Appliquer ce critère au cas d’un atome d’azote de masse mN = 2.3 · 10-26 kg et
d’énergie EN = 25 meV dans une molécule d’ammoniac de taille d = 3 · 10-10 m. Est-ce cohérent
avec le résultat de la question précédente ?

On s’intéresse à une particule quantique de masse m astreinte à se déplacer dans un espace unidi-
mensionnel, assimilé à l’axe Ox. À cette particule est associée la fonction d’onde ψ(x, t).

4. Rappeler la probabilité de trouver la particule entre les positions x et x + dx à l’instant t. En
déduire la condition de normalisation portant sur la fonction d’onde ψ. Montrer alors que la fonction
ψ est fixée à une phase près. Est-ce un problème ?

La fonction d’onde ψ est régie par l’équation de Schrödinger à une dimension :

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
+ V ψ, (1)

où V est le potentiel dans lequel évolue la particule. On suppose dans la suite que le potentiel est
fonction de la dimension spatiale seulement : V = V (x).

5. En cherchant la fonction d’onde ψ sous la forme ψ(x, t) = φ(x)χ(t), montrer que iℏ 1
χ

dχ
dt = E ,

où E est une constante dont on donnera l’unité. Établir que la fonction χ(t) = exp(−iωt) convient
pour la partie temporelle, sous réserve que la normalisation porte sur la partie spatiale. Relier alors
E et ω.

1.2 Double puits de potentiel infini

On modélise dans un premier temps la molécule d’ammoniac par un potentiel V1 à double puits infini
symétrique rectangulaire (voir figure 2). Les fonctions d’onde localisées dans le puits A (resp. dans
le puits B) sont notées ψA (resp. ψB). Les fonctions spatiales associées sont notées respectivement
φA et φB .
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+∞ si |x| < x0
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+∞ si x0 + l < |x|

Figure 2: Double puits de potentiel infini.

6. Que veut-dire qu’une fonction d’onde est localisée sur un domaine ? Pourquoi doit-on considérer
les fonctions identiquement nulles en dehors des puits de potentiel ? Donner les conditions aux
limites pour les fonctions φA et φB .

7. Déterminer, à un facteur de normalisation près, la forme des solutions φA,n (indexées par un
entier n ∈ N∗) dans le puits A (indication : poser y = x− x0). Exprimer la valeur de EA,n relative
à chacune de ces solutions. Commenter la valeur du niveau d’énergie le plus bas (énergie de point
zéro).
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8. Tracer, sur un même graphique représentant le puits de potentiel A selon Ox, les niveaux d’énergie
EA,n, les fonctions φA,n, et les fonctions |ψA,n| 2 pour n ∈ {1, 3}.

9. Soit une molécule d’ammoniac dans un état décrit par ψA,n d’énergie EA,n à un instant t donné.
Quelle est la probabilité de trouver l’atome d’azote dans le puits B à l’instant t′ > t ? Conclure.

1.3 Double puits de potentiel fini

On considère maintenant un profil d’énergie potentielle V2 plus réaliste : un double puits infini
rectangulaire à saut fini de hauteur V0 (voir figure 3). Dans la suite, on considère E < V0.
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V0 si |x| < x0

0 si x0 ≤ |x| ≤ x0 + l

+∞ si x0 + l < |x|

Figure 3: Double puits de potentiel fini.

10. Justifier que, dans le domaine x0 ≤ x ≤ x0 + l, on a :

φB(x) = B sin(k (x− x0 − l)), avec k =

√
2mE
ℏ

, (2)

où B est une constante que l’on ne cherchera pas à exprimer. En déduire une forme de solution φA

dans le domaine −x0 − l ≤ x ≤ −x0.

11. Dans le domaine −x0 < x < x0, les solutions φC s’écrivent

φC(x) = C1 cosh(Kx) + C2 sinh(Kx), (3)

où C1, C2, et K sont des constantes. Justifier la forme des solutions φC . Exprimer K en fonction
de E , V0, m, et ℏ.

12. En tout point où le potentiel est borné, la fonction d’onde ψ doit être de classe C1 (i.e. ψ
ainsi que ses dérivées d’ordre un sont continues). En déduire deux relations entre φC(x

−
0 ), φB(x

+
0 ),

dφc

dx (x−0 ) et
dφB

dx (x+0 ).

À partir de ces relations reliant K à k, il est possible de déterminer l’énergie E de l’état stationnaire
φ, selon qu’il est symétrique (i.e. pair en x, ce qui conduit à C2 = 0) ou antisymétrique (i.e. impair
en x, ce qui conduit à C1 = 0). On note φsym

1 la première solution symétrique, d’énergie Esym
1 , et

φanti
1 la première solution antisymétrique, d’énergie Eanti

1 . On définit alors les fonctions spatiales φG

et φD, respectivement localisées dans les puits A et B :

φG(x) =
1√
2

(
φsym
1 (x) + φanti

1 (x)
)

et φD(x) =
1√
2

(
φsym
1 (x)− φanti

1 (x)
)

(4)

13. On considère que l’atome d’azote est localisé dans le puits A à t = 0. On a alors ψ(x, 0) = φG(x).
Écrire l’expression de la fonction d’onde ψ de la molécule d’ammoniac à un instant t quelconque, en
fonction de φsym

1 , Esym
1 , φanti

1 , Eanti
1 , et ℏ.

14. En exploitant l’invariance par rotation de phase, déduire que la fonction d’onde ψ décrit une
évolution périodique de l’état de la molécule d’ammoniac, dont on exprimera la période τ en fonction
de δE = Eanti

1 − Esym
1 et de ℏ. Calculer la fréquence f correspondante si δE = 9.85 · 10−5 eV.
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15. Décrire l’état de la molécule d’ammoniac à l’instant t = τ
2 . Quel phénomène quantique ce

changement d’état entre les instants t = 0 et t = τ
2 permet-t-il d’illustrer ?

2 Spectroscopie de Fourier et doublet du sodium

On s’intéresse dans ce problème à une méthode de spectroscopie de sources radiatives. Elle est basée
sur des mesures de cohérences temporelles du rayonnement dont on cherche à caractériser le spectre.
Son nom vient du fait qu’une transformation de Fourier est nécessaire pour convertir les données
brutes en un spectre réel.

2.1 Théorie de la spectroscopie de Fourier

La méthode de spectroscopie étudiée ici repose sur un montage d’interféromètre de Michelson (voir
figure 4). Celui-ci comporte un miroir M1 fixe et un miroir M2 mobile. La lame séparatrice S
réfléchit 50% du rayonnement en intensité, et en transmet 50%. On enregistre l’intensité ID arrivant
sur le détecteur D, situé en sortie de l’interféromètre, en fonction du déplacement e du miroir M2.

S

M1

M2

e

D

faisceau
incident

Figure 4: Interféromètre de Michelson.

On considère dans un premier temps un faisceau incident monochromatique de fréquence ν0, que
l’on note E0(t) = A cos(2πν0t). Par définition, son intensité est I0 = ε0c ⟨E0(t)

2⟩T , où ε0 est la
permittivité diélectrique du vide, c la célérité de la lumière dans le vide, et ⟨·⟩T désigne la moyenne
d’une fonction périodique sur sa période.

1. Dans le cas d’une source monochromatique et ponctuelle, décrire qualitativement la figure
d’interférences obtenue en sortie de l’interféromètre.

2. Calculer la différence de marche δ ainsi que la différence de temps de marche τ en fonction des
données du problème.

3. Calculer l’intensité du faisceau ID arrivant sur le détecteur D en fonction de la différence de
temps de marche τ , de la fréquence ν0 et de l’intensité I0 du faisceau incident.

On considère maintenant un faisceau incident polychromatique E0(t) =
∫
RA(ν) cos(2πνt) dν, de

densité spectrale D(ν) = A(ν)2. Par convention, on fixe
∫
R D(ν) dν = A2.

4. Calculer la valeur de l’intensité ID arrivant sur le détecteur D en fonction des données du
problème.

5. Justifier que l’interférogramme obtenu est lié à la transformée de Fourier de

D′(ν) =
1

2
(D(ν) +D(−ν)) . (5)

6. Montrer que la mesure de l’interférogramme permet de calculer D′, et par conséquent D. Com-
menter cette méthode de spectroscopie.

4



2.2 Mesure spectroscopique du doublet du sodium

L’interféromètre de Michelson représenté en figure 4 est éclairé par une lampe à vapeur de sodium.
Le spectre du sodium présente deux raies brillantes jaunes de longueurs d’onde voisines, notées λ1 et
λ2. On note l’écart entre ces raies ∆λ = λ2−λ1 > 0. Deux secteurs de l’interférogramme, présentant
l’intensité ID mesurée par le détecteur en fonction de la différence de marche δ, sont reproduits en
figure 5. La figure 5a montre l’interférogramme pour δ ∈ [0, 10 µm], et 5b pour δ ∈ [0, 1 mm].
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Figure 5: Interférogramme ID(δ) d’une lampe à vapeur de sodium.

7. Justifier, sans calcul, le brouillage périodique des interférences. Comment s’appelle ce phénomène
ondulatoire ?

8. Déduire de la lecture de cet interférogramme que les deux raies du spectre du sodium ont la
même intensité.

9. On suppose ∆λ ≪ λ1. En calculant l’intensité ID arrivant sur l’écran dans cette situation,

montrer que la différence de marche δ varie de
λ2
1

∆λ entre deux brouillages successifs.

10. À partir de l’interférogramme, donner une estimation de λ1 et de ∆λ. En déduire λ2.

Données et formulaire

Données

� constante de Planck : h = 6.64 · 10−34 J · s;

� constante de Planck réduite : ℏ = h
2π = 1.05 · 10−34 J · s;

� charge élémentaire : e = 1.60 · 10−19 C;

� constante de Boltzmann : kB = 1.38 · 10−23 m2 · kg · s−2 · K−1.

Formulaire

� transformation de Fourier : f̃(t) =
∫
R f(ν) exp(2iπνt) dν;

� somme de deux cosinus : cos(a) + cos(b) = 2 cos
(
a+b
2

)
cos

(
a−b
2

)
;

� produit de deux cosinus : cos(a) cos(b) = 1
2 (cos(a+ b) + cos(a− b));

� formule d’Euler pour le cosinus : cos(a) = 1
2 (exp(ia) + exp(−ia)).
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