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Ce sujet est composé de deux problemes indépendants. Le premier porte sur les oscillations de
latome d’azote dans la molécule d’ammoniac (NHs). Le second aborde une méthode de spectroscopie
de Fourier, et son application au cas d’une lampe & vapeur de sodium (Na). Des données et un
formulaire sont disponibles & la fin de cet énoncé.

1 Inversion de la molécule d’ammoniac

On s’intéresse dans ce probleme aux oscillations effectuées par l’atome d’azote d’une molécule
d’ammoniac entre deux conformations stables. A I’échelle quantique, les énergies sont usuellement
exprimées en électron-Volt (eV), 1leV correspondant a I’énergie acquise par un électron accéléré sous
un potentiel de 1V. On rappelle la conversion d’une énergie exprimée en eV en une énergie exprimée
enJ: E[J] = eEleV], ou e est la charge élémentaire.

1.1 Traitement quantique et fonction d’onde

La molécule d’ammoniac NHj3 se présente sous la forme d’une pyramide symétrique, ’atome d’azote
étant & son sommet. Les trois atomes d’hydrogene définissent un plan de référence, et la position
de 'atome d’azote est alors repérée par I'abscisse x telle que |x| est la distance de Patome d’azote
au plan de référence (voir figure la). La molécule d’ammoniac peut se trouver dans deux états de
conformation, selon que l'atome se trouve du c¢6té x > 0 ou du coté x < 0. Les deux états sont
séparés par une barriere de potentiel Vy = 0.25 eV (voir figure 1b). On appelle inversion le passage
d’une conformation & l'autre, lorsque ’atome d’azote traverse la barriere de potentiel.
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Figure 1: Géométrie et énergie potentielle de la molécule d’ammoniac

1. Interpréter la forme, la symétrie et les points particuliers de la courbe d’énergie potentielle
présentée en figure 1b.

2. L’énergie thermique kg T est-elle suffisante pour que la molécule d’ammoniac puisse s’inverser
a température ambiante 7 A partir de quelle température cette inversion peut-elle s’effectuer ?
Commenter.

Une des spécificités de la théorie quantique est que tout objet qu’elle décrit présente simul-
tanément des comportements corpusculaire et ondulatoire. De cette maniere, a toute particule



d’énergie E et de quantité de mouvement p, on peut associer une onde :

e de fréquence v et de pulsation w = 27v, telles que E = hv = hw;

e de longueur d’onde A et de vecteur d’onde de norme k = 27’7, tels que p = % = hk.
3. Proposer un critere permettant de déterminer si 1’étude d’une particule nécessite un traitement
quantique ou non. Appliquer ce critére au cas d’un atome d’azote de masse my = 2.3 - 1025 kg et
d’énergie Ey = 25 meV dans une molécule d’ammoniac de taille d = 3 - 1071 m. Est-ce cohérent
avec le résultat de la question précédente ?

On s’intéresse a une particule quantique de masse m astreinte a se déplacer dans un espace unidi-
mensionnel, assimilé & axe Ox. A cette particule est associée la fonction d’onde ¥(z,t).

4. Rappeler la probabilité de trouver la particule entre les positions = et x + dz a l'instant ¢t. En
déduire la condition de normalisation portant sur la fonction d’onde 1. Montrer alors que la fonction
1 est fixée a une phase pres. Est-ce un probleme 7

La fonction d’onde v est régie par I’équation de Schrodinger a une dimension :

ihr = —5— =5+ Vi, (1)

ou V est le potentiel dans lequel évolue la particule. On suppose dans la suite que le potentiel est
fonction de la dimension spatiale seulement : V = V(x).
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5. En cherchant la fonction d’onde ¢ sous la forme 9(z,t) = ¢(x) x(t), montrer que ih{ Z = €&,

ol £ est une constante dont on donnera l'unité. Etablir que la fonction x(t) = exp(—iwt) convient
pour la partie temporelle, sous réserve que la normalisation porte sur la partie spatiale. Relier alors
E et w.

1.2 Double puits de potentiel infini

On modélise dans un premier temps la molécule d’ammoniac par un potentiel V; & double puits infini
symétrique rectangulaire (voir figure 2). Les fonctions d’onde localisées dans le puits A (resp. dans
le puits B) sont notées ¥4 (resp. ¥p). Les fonctions spatiales associées sont notées respectivement
v et pp.
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Figure 2: Double puits de potentiel infini.

6. Que veut-dire qu’une fonction d’onde est localisée sur un domaine ? Pourquoi doit-on considérer
les fonctions identiquement nulles en dehors des puits de potentiel 7 Donner les conditions aux
limites pour les fonctions w4 et ¢pg.

7. Déterminer, & un facteur de normalisation pres, la forme des solutions ¢4, (indexées par un
entier n € N*) dans le puits A (indication : poser y =  — x¢). Exprimer la valeur de €4, relative
a chacune de ces solutions. Commenter la valeur du niveau d’énergie le plus bas (énergie de point
76ro).



8. Tracer, sur un méme graphique représentant le puits de potentiel A selon Oz, les niveaux d’énergie
Ean, les fonctions 4 ,, et les fonctions |14 ,,|? pour n € {1,3}.

9. Soit une molécule d’ammoniac dans un état décrit par 14 , d’énergie €4, & un instant ¢ donné.
Quelle est la probabilité de trouver I'atome d’azote dans le puits B & l'instant ¢ > ¢ ? Conclure.

1.3 Double puits de potentiel fini

On considére maintenant un profil d’énergie potentielle V5 plus réaliste : un double puits infini
rectangulaire & saut fini de hauteur V; (voir figure 3). Dans la suite, on considére £ < Vj.
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Figure 3: Double puits de potentiel fini.

10. Justifier que, dans le domaine o <z <z +1[, on a :

ep(x) =B sin(k (x —xg—1)), aveck= 2ng, (2)

ou B est une constante que 1’'on ne cherchera pas a exprimer. En déduire une forme de solution ¢ 4
dans le domaine —xg — [ < x < —xp.

11. Dans le domaine —xy < = < xg, les solutions ¢ s’écrivent

pco(x) = Cy cosh(Kz) + Cq sinh(Kx), (3)

ou C1, C5, et K sont des constantes. Justifier la forme des solutions ¢¢. Exprimer K en fonction
de &, Vo, m, et h.

12. En tout point ou le potentiel est borné, la fonction d’onde ¢ doit étre de classe C! (i.e.
ainsi que ses dérivées d’ordre un sont continues). En déduire deux relations entre ¢ (7 ), ¢5(7d),

doe (- —\ o d
e (wg) et 52 ()

A partir de ces relations reliant K & k, il est possible de déterminer I’énergie £ de I’état stationnaire
®, selon qu’il est symétrique (i.e. pair en x, ce qui conduit & Cy = 0) ou antisymétrique (i.e. impair
en z, ce qui conduit & C; = 0). On note p}¥™ la premiere solution symétrique, d’énergie £7°™, et
314 a premiere solution antisymétrique, d’énergie £, On définit alors les fonctions spatiales g

et wp, respectivement localisées dans les puits A et B :

o) = % (E7™(@) + M(z) ot ppl(z) = % (¢ () — g3i()) (4)

13. On consideére que 'atome d’azote est localisé dans le puits A a¢ = 0. On a alors ¢(z,0) = pg(x).
Ecrire ’expression de la fonction d’onde v de la molécule d’ammoniac & un instant ¢ quelconque, en
fonction de @™, EPY™, inti; ganti "ot b,

14. En exploitant I'invariance par rotation de phase, déduire que la fonction d’onde @ décrit une
évolution périodique de I’état de la molécule d’ammoniac, dont on exprimera la période 7 en fonction
de 6& = £xnti — £9™ et de h. Calculer la fréquence f correspondante si 6 = 9.85- 1075 eV.



15. Décrire I'état de la molécule d’ammoniac a l'instant ¢t = 7. Quel phénomene quantique ce

changement d’état entre les instants ¢t = 0 et t = § permet-t-il d’illustrer 7

2 Spectroscopie de Fourier et doublet du sodium

On s’intéresse dans ce probleme & une méthode de spectroscopie de sources radiatives. Elle est basée
sur des mesures de cohérences temporelles du rayonnement dont on cherche a caractériser le spectre.
Son nom vient du fait qu’une transformation de Fourier est nécessaire pour convertir les données
brutes en un spectre réel.

2.1 Théorie de la spectroscopie de Fourier

La méthode de spectroscopie étudiée ici repose sur un montage d’interférometre de Michelson (voir
figure 4). Celui-ci comporte un miroir M; fixe et un miroir My mobile. La lame séparatrice S
réfléchit 50% du rayonnement en intensité, et en transmet 50%. On enregistre I'intensité Ip arrivant
sur le détecteur D, situé en sortie de l'interférometre, en fonction du déplacement e du miroir Ms.
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Figure 4: Interférometre de Michelson.

On considere dans un premier temps un faisceau incident monochromatique de fréquence vy, que
I'on note Ey(t) = Acos(2mvgt). Par définition, son intensité est Iy = eoc (Eo(t)?)7, olt g est la
permittivité diélectrique du vide, ¢ la célérité de la lumiere dans le vide, et ()7 désigne la moyenne
d’une fonction périodique sur sa période.

1. Dans le cas d’'une source monochromatique et ponctuelle, décrire qualitativement la figure
d’interférences obtenue en sortie de l'interférometre.

2. Calculer la différence de marche ¢ ainsi que la différence de temps de marche 7 en fonction des
données du probleme.

3. Calculer l'intensité du faisceau Ip arrivant sur le détecteur D en fonction de la différence de
temps de marche 7, de la fréquence vy et de I'intensité Iy du faisceau incident.

On considére maintenant un faisceau incident polychromatique Eo(t) = [, A(v)cos(2wvt)dy, de
densité spectrale D(v) = A(v)?. Par convention, on fixe [, D(v)dv = A%

4. Calculer la valeur de l'intensité Ip arrivant sur le détecteur D en fonction des données du
probleme.

5. Justifier que l'interférogramme obtenu est lié a la transformée de Fourier de

D'(v) = 5 (D(v) + D(-v)). ()

N =

6. Montrer que la mesure de I'interférogramme permet de calculer D’, et par conséquent D. Com-
menter cette méthode de spectroscopie.



2.2 Mesure spectroscopique du doublet du sodium

L’interférometre de Michelson représenté en figure 4 est éclairé par une lampe a vapeur de sodium.
Le spectre du sodium présente deux raies brillantes jaunes de longueurs d’onde voisines, notées A\ et
A2. On note ’écart entre ces raies AX = Ag — A1 > 0. Deux secteurs de l'interférogramme, présentant
I'intensité I'p mesurée par le détecteur en fonction de la différence de marche ¢, sont reproduits en
figure 5. La figure 5a montre l'interférogramme pour § € [0, 10 um], et 5b pour § € [0,1 mm].
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Figure 5: Interférogramme Ip(d) d’une lampe & vapeur de sodium.

7. Justifier, sans calcul, le brouillage périodique des interférences. Comment s’appelle ce phénomene
ondulatoire 7

8. Déduire de la lecture de cet interférogramme que les deux raies du spectre du sodium ont la
méme intensité.

9. On suppose AN < A;. En calculant l'intensité Ip arrivant sur I’écran dans cette situation,

g . A2 . .
montrer que la différence de marche ¢ varie de 3 entre deux brouillages successifs.

10. A partir de Iinterférogramme, donner une estimation de A; et de AX. En déduire \s.

Données et formulaire

Données
e constante de Planck : h =6.64-1073% J - s;

e constante de Planck réduite : h = 2}—’77 =1.05-1073*1J - s;

e charge élémentaire : e = 1.60 - 10712 C;

e constante de Boltzmann : kp = 1.38-1072> m? - kg - s72 - K~1.

Formulaire
e transformation de Fourier : f(t) = Jg f(v) exp(2imvt) dv;

e somme de deux cosinus : cos(a) + cos(b) = 2 cos(22) cos(%52);

e produit de deux cosinus : cos(a) cos(b) = 3 (cos(a + b) + cos(a — b));

e formule d’Euler pour le cosinus : cos(a) = 3 (exp(ia) + exp(—ia)).

ot



